

Home
Welcome to the home page for Alemba’s RESTful API. This is your online home for all information on

the API.

Why RESTful?
A RESTful API is an Application Programming Interface that follows REST (or Representational State

Transfer) principles to allow one system to manipulate data on another. REST is a widely used

protocol that provides a wide range of benefits over older protocols, such as performance, scalability

and simplicity.

How is this different from the original vFire API?
The original WCF-based (Windows Communication Foundation) API is procedural – it exposes a

limited set of operations that manipulate a limited set of entities, and you need to know the name of

the operation that you want to perform in order to use it. By contrast, the RESTful API is entity

centric – it exposes all the entities within vFire, and the verbs that can be used to manipulate those

entities follow the same standard pattern. The RESTful API is also self-documenting, in that you can

discover more detail about how to use the API from the API itself.

The result is a more flexible and more intuitive way of working with vFire data.

How do I get it?
If you have vFire 9.7 or later installed, you already have it. It comes as part of the standard install,

and does not require additional installation, licensing or cost to use.

What you get
 3 web services in 2 web sites in 2 app pools:

o Alemba.Web

 Authorization service – allows you to login and provides a token to use for

all subsequent API calls

 The API Explorer (see below)

o Alemba.API – the main API

 38 new tables of metadata in the vFire database

 API Explorer – an interactive UI for understanding the API, including live search facilities as

well as detailed technical information regarding all the available entities and actions

 This guide.

Getting ready to use the API
The web services should be automatically configured as part of the install. However you are advised

to check the settings in IIS, to confirm that the App Pool is configured for automatic recycling out of

hours. You must install a suitable SSL certificate and enable SSL bindings on Alemba.Web and

Alemba.API.

The base url will be <servername>/<VirtualDirectory>/Alemba.Web

That’s it.

Getting Started
The best way to familiarize yourself with the API is through the API Explorer. This gives you an

overview of the entities covered by the API, their properties, and what actions are supported per

entity. It also provides a visual interface for viewing live data. For details see the API Explorer Guide.

Once you are familiar with the API, you can start using the API programmatically. See the

Programmers’ Guide for technical details.

For information on how to use the API to achieve business level tasks, such as raising a Service

Order, see the Cook Book.

API Explorer Guide

What it does
The API Explorer allows you to explore all the entities within the API. For each entity, you can

 See the attributes of all the entity’s properties

 See all the actions that can be performed

 Browse the data in your test database

Logging in
You can log into the API Explorer using your vFire Id and Password, and specifying the “scope” –

whether you are logging in as an Analyst or User. Both Analysts and User can log in and use the API,

subject to the relevant privileges.

On login, the logged in user’s name is displayed on the left. On the right you can select the current

Partition, if the system is partitioned.

Navigation
By default, the API Explorer opens at the Call entity (see API structure). All of the available entities

appear in a tree in the Entities panel on the left. Physical entities appear in blue, logical ones (which

you cannot select) in grey. Clicking on any of these relocates you at that object. You can expand or

contract the tree to explore the entities.

Alternatively, use the Search field above the tree, which returns a list of matches that is refined as

you type. If the item is currently not visible in the tree, it expands to show where that entity is

located in the hierarchy.

Your current position in the entity hierarchy is reflected in the breadcrumb trail above that panel.

Physical entities are in black, logical ones are greyed out. You can click on any physical entity in the

breadcrumb trail to go to that entity. Currently selected entity is shown in blue.

Entity details
The rest of the API Explorer shows details about the selected entity.

Base information
At the top is the entity name. Below this, there is a brief description of the entity plus core

information about the entity itself:

 (Description) A brief summary of what the entity is

 Resource Name Name used in url. If none, this is an abstract entity – a logical
grouping for child entities, which is not accessible via the API

 Parent Type Entity type of immediate parent

 Root Type Entity type of entity from which this ultimately derives

 Table If present, name of underlying database table

 Status Indicates whether this entity is officially supported yet

Actions
Below the entity details, there is a list of actions for that entity. Selecting one will display information

about the action.

Action
At the top is the action name and following this is further information about the action itself:

Action information includes:

 (Description) A brief summary of what this action does

 Url The URL to invoke this action

 Method (s) The supported HTTP method(s).

 Metadata The link to the metadata for the action

 Required permission Privilege needed to invoke this action, for both Analysts &

Users

 Initial State The conditions that need to be fulfilled for this action to be
usable e.g. a call that you want to Update must either be in a
New state, or must be in an Open* state and locked by you.

 Status Indicates whether this action is officially supported for this
entity yet

Below this, there may be between two and five further sections, depending on the selected action.

1. Action Parameters

For each action that can accept them, details are shown for each property and parameter that can

be set as part of the action. This includes:

 (Label) User-friendly name. If Required, followed by an asterisk

 (Description) Textual explanation of property’s purpose

 Path The path that identifies the location of the value in the object. For example, the
path $action.Description translates to the JSON object { “$action”: { “Description”:
“…” } }

 Data Type One of the supported Data Types

 Display Type An indication of Display Type

 Max Length Shown for fields if they have a fixed length

 Required Indicates a mandatory property or parameter

 Readonly Indicates if the property is readonly

 Default Value Value that will be used is none suppliedRules Details any special
conditions that apply to the parameter. Examples include the Capitalization rule on Call
Ref, or RequiredIfNotNull on IPK Status (both on Call.Create). Attributes of the rule
include:

 (Description)

 Type – e.g. RequiredIfTrue

 Source – Field whose state impacts Target

 Target – Field impacted by state of Source

 Phase – Before Patch and Before Commit. In an update action, the API validates the
input (Before Patch), retrieves the existing record and patches it, then validates the
changes (Before Commit) before saving

 Scope – Client, Client/Server, or Server. Where the Scope is Client or Client/Server this
is a hint at suggested client side behaviour. Where the Scope is Server this is an indicator
at server side business rules.

2. Example Request

An example of the JSON (JavaScript Object Notation) that you would use to perform that action. This

may include a section called $action (as in the Defer action), which can include parameters – values

that control behaviour, as opposed to directly setting properties on that object.

3. Example Response

An example of the JSON typically returned on successfully performing an action, including mock

data.

4. Data Explorer

For Search actions, this allows you to see data for the entity.

 Query Build your own query (“Custom”) or, where available, select a shipped
example query

 Resource The element of the url that identifies this version of the entity

 Select The properties to return. A UI for the $select clause (see Searching)

 Filter The properties to filter by. A UI for the $filter clause (see Searching)

 Order The properties to order by. A UI for the $orderby clause (see Sorting)

 Left Join A way to link to tables that are not already linked as part of the
schema. A UI for the $leftJoin clause (see Joining)

 Inner Join A way to link to tables that are not already linked as part of the
schema. A UI for the $innerJoin clause (see Joining)

 Actual Query The statement that is generated from the above parameters

 (Results table) The results. By default just shows the first 10 fields. More data
retrieved on demand as you scroll down.

5. Augmenters

A list of the augmenters that are relevant to this entity and action. The following attributes are

shown per augmenter: Name, Description, Example, Version, and Augmenter Type.

Properties
The vertical panel on the far right shows the properties that are available for the entity and their

attributes, in the context of the selected action.

 (Label) this is the user-friendly display name

 (Description) a brief description of the property

 Name the name of the property, as used by the API programmer

 Data Type one of the supported data types – see here. If the Data Type is
another Entity Type, the value can be used as a link to that Entity
Type

 Display Type one of the supported display types – see here

 Property Type Contains:

 ”Schema” for out-of-the-box properties, or

 ”Extension” for fields created using Designer

 Declared By This is the entity type from which this property is inherited.

Note that if you add new fields using vFire Core Designer, you will need to restart the Alemba.API

web service to make them appear in the API Explorer.

Programmers’ Guide

API structure
The RESTful API is built on top of a schema that encompasses the primary data entities in the vFire

system. Additionally a number of logical entities have been added that allow similar entities to be

grouped together. The hierarchical structure allows sub-entities to inherit common properties,

allowing for consistent meaning and behaviour.

Languages
The API is platform independent - it can be accessed from any kind of web client, using a range of

languages. The API Explorer provides language neutral examples of the structures sent and received

as part of a web request/response, for each action, for each entity.

Authentication
The API uses standard oAuth 2.0 authentication, via /alemba.web/oauth/login.

The authentication workflow issues a short-lived Access Token and a longer-lived Refresh Token on

Login. The Access Token is used for authentication on the REST API. The Refresh Token is used to

renew the Access Token and therefore maintain the session. The Refresh Token allocates a vFire

Core Session and consumes a licence.

The process is illustrated below, flowing from the top downwards.

When the Refresh Token is used to renew an Access Token, a new Refresh Token is also issued, and

the vFire Core Session is extended. The used Refresh Token becomes invalid and should be

discarded. Clients should store the new Refresh Token for subsequent usage. If the vFire Core

Session expires or is removed, the Refresh Token will become invalid. If the Refresh Token expires,

the vFire Core Session is terminated.

The single use Refresh Token and short lived Access Token ensures that compromised tokens quickly

become invalid - protecting the security of individual users, and preventing unauthorized Access

Token reuse.

The Access Token must be presented in the Authorization header of the HTTP request:

Authorization: Bearer <Access Token>

Note that the Authorization service supports the following oAuth 2.0 Grant Types:

 Password - Authenticate using a username and password

 client_credentials - Authenticate using integrated security

 refresh_token - Authenticate using an existing Refresh Token

Logging in
Below is an example of the code used to login with a username and password:

function passwordLogin() {

 var args = {

 client_id: "clientid",

 grant_type: "password",

 scope: "scope",

 password: "username",

 username: "password"

 };

 var xhr = $.ajax({

 url: 'alemba.web/oauth/login',

 type: "POST",

 data: args,

 contentType: 'application/x-www-form-urlencoded'

 });

 xhr.done(onGrantSuccess).fail(function (err) { return

onGrantFailure(err, "password"); });

 return xhr;

 }

Or, to refresh your access token:

function refreshTokenLogin(refreshToken) {

 var args = {

 client_id: "clientid",

 grant_type: "refresh_token",

 scope: "scope",

 refresh_token: refreshToken

 };

 var xhr = $.ajax({

 url: 'alemba.web/oauth/login',

 type: 'POST',

 data: args,

 contentType: 'application/x-www-form-urlencoded'

 });

 xhr.done(onGrantSuccess).fail(function (err) {

 if (err.status == 401) {

 }

 else {

 onGrantFailure(err, "refresh_token");

 }

 });

 return xhr;

 }

Note that scope should be set to session-type:Analyst or session-type:User. It is case sensitive.

Login Responses
For successful Logins the response will be:

{

 expires_in: number, // number of seconds until access_token expiry

 access_token: string, // token used for data access

 refresh_token: string, // token used for access_token renewal

 scope: string, // The actual scope of the token

}

Note that there is a new refresh_token in the response. The old one will no longer work and must be

discarded. It is acceptable to renew your access_token before it is due to expire, but you must not

do so with every request.

If the authorization request is not successful, clients can expect to receive a suitable HTTP response

code and JSON formatted data containing an error code.

The response data may also include error_description, which gives the developer a clue as to the

precise cause of the failure.

{

 error: string, // one of the oauth 2.0 error codes

 error_description: string, // a description of the error if applicable

}

In these cases, the response is deliberately vague so as to protect the integrity of the authorization

server.

HTTP Status Code Error Code Reasons

401 invalid_client The client_id is incorrect or the client is not enabled

400 invalid_grant The credentials are not correct, the user is not allowed to login

If you receive a 401 response, it is because your access token has expired, and you must refresh it

using the refresh token. If you receive a 401 response when using a refresh token, you must login

again with username and password.

Logging out
You can logout as follows:

 function logout() {

 var deferred = $.Deferred();

 var args = {

 token: exports.grant.refresh_token

 };

 var xhr = $.ajax({

 url: 'alemba.web/oauth/login',

 type: "POST",

 data: args,

 contentType: 'application/x-www-form-urlencoded',

 headers: {

 "Authorization": "Bearer " + exports.grant.access_token

 }

 });

 xhr.done(function () {

 //Logout success

 deferred.resolve();

 }).fail(function (err) {

 switch (err.status) {

 case 404:

 deferred.resolve();

 break;

 case 400:

 deferred.reject("Invalid token");

 break;

 case 401:

refreshTokenLogin(exports.grant.refresh_token).done(function () {

 //We've successfully refreshed the access token

 //Now we can try to invalidate the refresh token

again

 logout().done(function () {

 deferred.resolve();

 }).fail(function (err) {

 //Logout is still not working.

 //The session may still be active and may still

be consuming a license.

 //The session can be terminated by an

administrator from logon control, so this error should be reported

 deferred.reject(err);

 });

 }).fail(function () {

 //If you cant log in its because the refresh token

has expired.

 //This can be considered a successful logout

 deferred.resolve();

 });

 break;

 case 403: //Not allowed, probably because the refresh token

is not related to the access token

 default:

 deferred.reject(err.responseJSON.Message);

 break;

 }

 });

 return deferred.promise();

 }

Logout Responses
Logout will give one of the following responses:

200: Logged out successfully.

400: Token invalid or missing.

401: Not authorized because it’s not been possible to validate your ownership of the refresh

token. In this case you must refresh the access token and try again.

403: That refresh token doesn’t belong to you.

404: The refresh token is valid but has already been removed. Maybe you logged in

elsewhere.

Base RESTful API methods
The following HTTP verbs are used by the API to perform the listed actions.

 Create POST

 Read GET

 Update PUT

 Delete DELETE

(Note that neither soft nor hard deletion have been implemented in the first release)

A programmatically discoverable API
The API can be used to return information about itself, in the form of hypermedia – machine

readable descriptions and links to further similar information, allowing a developer to progressively

explore the breadth and depth of the API for themselves. What is more, these descriptions are used

by the API itself, guaranteeing that this “documentation” is always current.

For example, to discover root level information on the scope of the API, invoke …

http://localhost/alemba.api/api?$metadata&$options

Note that this response will also be returned for any request which does not specify a resource, for

example:

GET http://localhost/alemba.api

GET http://localhost/alemba.api/api

GET http://localhost/alemba.api/api/v1

The metadata will be returned in JSON format and will contain links to the metadata for top level

entities exposed by the API, for example:

{

 "_links": {

 "Approval": [

 {

 "_self": "api:v1/approval/$metadata"

 }

],

 "Call": [

 {

 "_self": "api:v1/call/$metadata"

 }

],

 ...

 },

 "description": "A description of the API, the links at this level and

the ResourceDescriptor response type."

}

All metadata responses may include the following properties

 "children":

 An array of descendant types for the current response.e.g.Call may list children including

Incident

 The metadata for each child only includes "_self"

 "description": A description of the current metadata response

 "name": The name of the entity that is the subject of the metadata response

 "properties":

 An array of property descriptions for the subject entity.

 These properties provide the minimum information required to understand the data model and

basic constraints.

 Each entry in the array may include the following properties.

 "name":

 The name of the entity property.

 "displayName":

http://localhost/nova.api/api?$metadata
http://localhost/alemba.api
http://localhost/alemba.api/api
http://localhost/alemba.api/api/v1

 The default display name of the property.This could be used in table column headers or form

fields.

 "type":

 A description of the data type of this property.

 The type property is a complex type which has the following properties

 "displayTypes":

 The suggested display types for this property

 "dataType":

 The type of data this property represents

 "class":

 The kind of property

 "description":

 A description of the purpose of the property.

 "usage":

 Internal when the property is used for internal business logic, otherwise Public

 "isKey":

 The property represents the unique identifier (primary key) for the entity

 "noSearch":

 When true, this property is not supported in searches

 "defaultValue":

 An indication of the default value for this property

 "length":

 The maximum length of this field.Text fields only.

 "uppercase":

 When true, this indicates that the Text value will be capitalized.Non capitalized input may

cause validation errors in a future release.

 "status":

 Indicates the current release status of the subject entity. "Alpha", "Beta", "GA"

 "_actions":

 A hash map of action name and an array of action metadata

 "_context":

 A reference to the entity metadata of a record or of the metadata of the parent of the subject

entity

 "_links":

 A hash map of name and an array of link metadata.These links must be requested using the http

verb GET

 "_self":

 A reference to the current response

link and action metadata will always include a link to _self and will often include a "href" property

The "href" may be templated, as denoted by the syntax {id}. The templated values must be replaced by

the client.

e.g. {id} in "api:v1/call/{id}" should be replaced with the Ref of a call.

{id} always indicates the primary key field for the target entity. All other entity properties may also be

referenced in the template. e.g. {Partition} where Partition is the name of the property in the entity

referenced by "_context".

"_context" and "_self" will always define a medialink to an API resource. For brevity, the links are

prefixed with "api:"

Clients should replace this prefix with the actual API base url

e.g. Given an api base url of http://web-server/core-system/alemba.api/api, api:v1/call/$metadata

should be interpretted as http://web-server/core-system/alemba.api/api/v1/call/$metadata

All API medialinks can be invoked using the $options suffix.

These links can then be followed to explore further details about the entity, what it is and what it
can do.

All API entities support simple and predictable RESTful actions. e.g.

"api:v1/call" supports GET for searching and POST for create

"api:v1/call/1" supports PUT for update and GET to get that instance of a call.

Discovering the entity actions
Many entities also support more complex actions, such as forward.

These actions are typically accessed using "api:v1/call/1/forward"

Details of the required inputs and supported HTTP method can be found in the metadata for that

action.

For example the Call Create action metadata can be accessed with

http://localhost/alemba.api/api/call/$create?$options

This metadata gives you info about the Create action, including a list of mandatory and optional

properties and parameters. $create in the above example can be substituted with any action that is

supported by the Call entity.

What is more, you can use the same principles not just as an aid to programming, but at runtime

too. The metadata that is returned about a specific object contains links for the list of actions for

that object instance in its current state. (An exception is the Search action, which will only return

links to the relevant Get action for each record.) For example you will only see the Reopen action if a

Call is in a closed state.

Searching
The Rest API supports expressive searching of most entities

http://localhost/nova.api/api/call/$create?$options

The query parameters and syntax applies to all Search actions for all entities.

To start, it is possible to simple request a resource using HTTP GET.

GET api:v1/call

This will return a reference to all accessible calls in JSON format

{

 "results": [

 {

 "_context": "api:v1/call/$metadata",

 "_self": "api:v1/call/3"

 },

 {

 "_context": "api:v1/incident/$metadata",

 "_self": "api:v1/incident/4"

 }

],

 "_self": "api:v1/call?$top=2147483647",

 "__count": 275

}

The response contains the following properties

 "results": This is an array of search results. Each result will always include a _context url (so you

know what it is) and a _self url (so you know how to get that item).

 "_self": This is a url refering to the current response

Notice that the _self url includes a query string parameter

$top=2147483647

The search actually ran without any row limit. It will try to return every row (accessible to the current

session).

This query string parameter is added to the response as a hint.

Paging

The Rest API supports flexible paging of search results.

$top accepts a positive signed integer value (Int32) and is used to define a row count.

GET api:v1/call?$top=30

This will limit the response to the top 30 records

$orderby accepts a comma separated list of property names and optional sort direction (see $select

for more details on property names) and is used to define the order of the results

GET api:v1/call?$orderby=Ref

This will return all Calls ordered by Ref

By default the orderby clause will be applied in ascending order, but this can be overriden

GET api:v1/call?$orderby=Ref asc

This will return all Calls ordered by Ref in ascending order

GET api:v1/call?$orderby=Ref desc

This will return all Calls ordered by Ref in descending order

$skip accepts a positive signed integer value (Int32) and is used to define a number of rows to skip

e.g. GET api:v1/call?$top=30

This will limit the response to the top 30 records

and GET api:v1/call?$skip=30&$top=30

This will skip the first 30 records and return the next 30 (ie rows 31 to 60)

These parameters can be combined (in any order) to control page size and contents

e.g. GET api:v1/call?$top=30&$skip=30&$orderby=Ref desc

This will return the top 30 Calls ordered by Ref in descending order

The API also supports counting, which can be used to calculate the total number of pages

$count must be set to true and is used to instruct the api to return a count only

GET api:v1/call?$count=true

This will return a text/plain response containing a number which represents the total number of rows.

Alternatively, $inlinecount can be used to have the count be returned with a set of results

GET api:v1/call?$top=30&$inlinecount=true

{

 "results": [

 {

 "_context": "api:v1/call/$metadata",

 "_self": "api:v1/call/3"

 },

 {

 "_context": "api:v1/incident/$metadata",

 "_self": "api:v1/incident/4"

 }

],

 "_self": "api:v1/call?$top=2147483647",

 "__count": 275

}

Note that "__count" is included in the response body.

Best Practice

Use of these paging features is critical for individual client and application wide performance and

should be utilized by all API consumers for all searches.

Even where it is assumed that there are only a handful of records.

Note, that using $inlinecount results in two executions of the database query. One to get the count

and one to get the result set.

Therefore it is important that this parameter is not added to every request

Selecting columns

The Rest API supports configurable column selection in search results.

$select accepts a comma separated list of property paths to include in the search results

GET api:v1/call?$select=Ref,Description

This instructs the API to include Ref and Description in the search results

{

 "results": [

 {

 "Ref": 3,

 "Description": "Microsoft Windows 2000 needs to be installed across

all client machines.",

 "_context": "api:v1/call/$metadata",

 "_self": "api:v1/call/3"

 },

 {

 "Ref": 4,

 "Description": "Cannot access intranet.",

 "_context": "api:v1/incident/$metadata",

 "_self": "api:v1/incident/4"

 }

],

 "_self": "api:v1/call?$select=Ref,Description&$top=2147483647"

}

Note that as well as retrieving properties from the entity, you can directly retrieve properties from

related entities. This is extremely powerful. In the old WCF API, you would first need to get the raw

foreign key ref from the main entity and then do a lookup on the related one, or you would have to

write your own custom query, including joining objects and ensuring that the related object is not

locked. The RESTful API is built on an underlying schema that takes care of these complexities and

allows you to get the data you need in the simplest possible way. In fact you can traverse the entity

relationships as far as you need, so getting a call’s service’s user’s email can be achieved with

GET api:v1/call?$select=Ref,Description,Priority

This will add the Priority ref to the results

{

 "Ref": 4,

 "Description": "Cannot access intranet.",

 "Priority": 3,

 "_context": "api:v1/incident/$metadata",

 "_self": "api:v1/incident/4"

}

It is possible to select linked fields from relation type properties

GET api:v1/call?$select=Ref,Description,Priority.Name

{

 "Ref": 4,

 "Description": "Cannot access intranet.",

 "Priority": {

 "Name": "Priority 3",

 "_context": "api:v1/call-priority/$metadata",

 "_self": "api:v1/call-priority/3"

 },

 "_context": "api:v1/incident/$metadata",

 "_self": "api:v1/incident/4"

}

Notice that the linked entity includes metadata links

This also applies to linked fields from linked relations.

GET api:v1/call?$select=Ref,Description,Service.Location.Name

Returns

{

 "Ref": 4,

 "Description": "Cannot access intranet.",

 "Service": {

 "Location": {

 "Name": "San Francisco",

 "_context": "api:v1/location/$metadata",

 "_self": "api:v1/location/9"

 },

 "_context": "api:v1/service/$metadata",

 "_self": "api:v1/service/1"

 },

 "_context": "api:v1/incident/$metadata",

 "_self": "api:v1/incident/4"

}

Property paths in $select can be aliased using a prefix to simplify the response

GET api:v1/call?$select=Ref,Description,LocationName:Service.Location.Name

{

 "Ref": 4,

 "Description": "Cannot access intranet.",

 "LocationName": "San Francisco",

 "_context": "api:v1/incident/$metadata",

 "_self": "api:v1/incident/4"

}

$select will also accept named Extension Augmenters

GET api:v1/call?$select=Ref,@AssignmentState

This will add the computed assignment state to the response

{

 "Ref": 4,

 "AssignmentState": "Assigned to Me",

 "_context": "api:v1/incident/$metadata",

 "_self": "api:v1/incident/4"

}

To help with orientation during development, $select will also accept *. This will return all properties

for the entity.

$select=*

Best Practice

$select=* is only intended for development and should not be used in production.

Selecting values from extension fields is supported, but carries a significant overhead and so should

be avoided.

Filtering

The Rest API supports expressive filtering of search results

$filter accepts a C# LINQ style predicate which is translated to parameterized SQL and applied as a

search filter

GET api:v1/call?$filter=Priority==1

This would return all accessible calls where the Priority is equal to 1

Equality Operators and Methods

All data types support basic equality comparison

== Is equal to

= Is equal to

!= Not equal to

Binary data types support basic equality comparison but in practice, this can only be used to compare

the property value with null.

GET api:v1/call/1/attachment?$filter=BinaryData!=null

Boolean data types support basic equality operators

When comparing with true or false, the right hand side of a boolean property equality expression can

be omitted.

Binary equality expressions can also be negated with !

GET api:v1/person?$filter=IsLoggedIn==true

is equivelant to GET api:v1/person?$filter=IsLoggedIn

or GET api:v1/person?$filter=IsLoggedIn==false

is equivelant to GET api:v1/person?$filter=!IsLoggedIn

DateTime data type filters must be used with one of the applicable augmenters

GET api:v1/call?$filter=CreatedDate>@DateTime(2017-01-01T00:00:00.000+1)

This will return all Calls which were created after Midnight on January 1st 2017 (UTC+1)

Note that the date value must be expressed in ISO8601 format

The @Now augmenter can be used to compare a date value with the current time.

GET api:v1/call?$filter=CreatedDate==@Now

This is most useful where a query will be designed and then subsequently reused.

The @NowOffset augmenter can be used to compare a date value with the current time and an offset

expressed in days hours and minutes

GET api:v1/call?$filter=CreatedDate>@NowOffset(0,-1,-30)

This will return Calls created in the last 0 days, 1 hours and 30 minutes (in the last hour and a half).

As with all filters, the expressions can be combined using logical And (&&) and Or (||) operators

GET api:v1/call?$filter=CreatedDate>=@DateTime(2017-01-

01T00:00:00.000+1)&&CreatedDate<=@NowOffset(0,0,-30)

This will return Calls created between Midnight on January 1st 2017 (UTC+1) and half an hour ago.

Dates do not have to be defined in UTC format, but MUST include the timezone.

If no timezone is supplied, dates are assumed to be in local server time.

Text and RichText data types support basic equality and can also be used with some string

comparison methods

The Contains method can be used to match records where a string property contains a word or phrase

GET api:v1/call?$filter=ShortDescription.Contains("email")

The StartsWith method can be used to match records where a string property starts with a word or

phrase

GET api:v1/call?$filter=ShortDescription.StartsWith("email")

The EndsWith method can be used to match records where a string property ends with a word or

phrase

GET api:v1/call?$filter=ShortDescription.EndsWith("email")

As with all filters, the expressions can be combined using logical And (&&) and Or (||) operators

GET api:v1/call

?$filter=hortDescription.Contains("email")||ShortDescription.StartsWith("ou

tlook")

Number data types support more complex equality comparison operators

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

GET api:v1/call?$filter=Number1>=3

Combining Expressions

Filter expressions can be combined using logical And (&&) and Or (||) operators and can be grouped

using parentheses (and)

GET api:v1/call?$filter=((Number1>=3

||Number2==1)&&(Priority==3||Priority==1))||(CreatedDate>@NowOffset(0,0,-

30)&&@IsAssignedToMe)

Note that query string parameter values must be url encoded

GET api:v1/call

?$filter=((Number1%3E%3D3%E2%80%8B%7C%7CNumber2%3D%3D1)%26%26(Priority%3D%3

D3%7C%7CPriority%3D%3D1))%7C%7C(CreatedDate%3E%40NowOffset(0,0,-

30)%E2%80%8B%E2%80%8B%E2%80%8B%26%26%40IsAssignedToMe)

Joining
You can use $join to link to entities that are not already linked as part of the schema definition. This

is the case with entities that have multi-column keys e.g. CallHistory, which has a composite key of

Ref and LastHistoryOrder. Once you create such a join, you will want to refer to properties of that

joined entity, so part of the definition of the join is an alias for that join, in the format

Alias:TargetEntity(TargetProperty==SourceProperty)

… where the clause in brackets can occur multiple times. For example:

&$join=LastAction:CallHistory(TicketId==Ref && Order==LastHistoryOrder)

You can then use the alias in your select clause just as if it were a property of the entity with a Data

Type that is the target entity, e.g. LastAction.Description.

Note that this technique should be used sparingly, because as with extension fields the relationship

is not indexed and so may result in reduced performance.

Case sensitivity
Note that everything after any of the $ functions above is case sensitive.

Security

Handling partitions
Where entities are Partitioned, the results returned are automatically limited to those in partitions

accessible to the current session. Therefore it is not necessary to apply partition filtering, however if

desired a specific partition can be specified in one of two ways.

1. $filter=Partition==1

This will return records where the Partition Ref equals 1. The filter will be applied even if the

entity is not partitioned

2. $partition=1

This is the recommended method and will work as above, but will only apply the partition

filter if the entity is actually partitioned. This will also account for variable partitioning of

Asset types e.g api/v1/asset?$partition=1 will return a combination of Services,

ConfigurationItems, etc. where Service may be partitioned, but ConfigurationItem is not.

Data Types
The following data types are exposed by the API:

RESTful API Equivalent in WCF API
Binary Byte Array
Boolean Boolean, Yes/No
DateTime Date/Time
Number Integer (including Double and Float)
Text String
RichText String

Data types can also be entities. For example, the Service properties on a Call has a Data Type of

Service (Lookup in the metadata json). This means that it contains the key value of the associated

object – click on the circle icon in the API Explorer to see what that is. (This is equivalent to the WCF

data type “Lookup”.)

Note that Boolean property standardises underlying data inconsistencies. Across various tables, flags

are stored as "Y", "YES", "T", "TRUE", "ON", "1", "P", "A" – for all of these, the API will

return true, and conversely will convert true to appropriate values on PUT and POST.

Display Types
The following table shows the types that are supported, and the related data types.

Display Type Data Type
Checkbox Boolean
DatePicker DateTime
DateTimePicker DateTime

Lookup entity
MultiLookup entity
MultiSelect entity
ListBox entity
Numeric Number
Password Text
RichText RichText
Select entity
Text Text
TextArea RichText
TieredSelect Entity

Action Versioning
Each release of vFire includes a version of the API that is built to work with that release. The API will

have its own version number which is not directly related to the vFire release version number.

Within each release, there may be new actions, extensions to existing actions, and fixes. Each action

will have its own version number, in the format major.minor.patch1, starting at 1.0.0 for actions that

are officially released, which will be incremented independently to reflect how it has been changed,

as follows:

 major = incompatible API change made

 minor = functionality added in a backwards-compatible manner

 patch = backwards-compatible bug fixes

The benefit of this approach is that users of previous versions of the API can gain a clear

understanding of whether any of the parts of the API that they are using have changed, and the

nature of that change, simply by comparing version numbers of each used action.

You should therefore build the appropriate version number into the url for each action, depending

on how you want to handle potential changes.

If you only specify the major version – v1 – this means that:

 your code should continue to function without modification

 you will be able to take advantage of any functional extensions

 you will use the latest patches

If you specify the major and minor versions – v1.0 – this means that:

 your code should continue to function without modification

 you will use the latest patches

If you specify all three parts – v1.0.0 – this means that:

 your code should continue to function without modification

 you will always use that specific version of that action

1 The use of a format with specific meaning associated with the increase of each part of the version number is known as
semantic versioning, see http://semver.org/

http://semver.org/

Alpha functionality
Note that within any release individual entities and/or actions may be flagged with a status of Alpha.

These are pre-release, and are provided without warranty and subject to change. Alemba takes no

responsibility for any adverse effects as a result of their use.

Augmenters
The API includes a set of inbuilt functions that simplify the retrieval of complex data using Search

actions. This allows API users to easily select, view and manipulate data using business-level

concepts, rather than dealing with the low level data that sometimes needs gathering from many

sources to provide that information. These functions are known as augmenters. These can be used

as virtual variables, for example in a filter clause. So if you only want to see calls that have breached,

you would say:

GET http://…/api/v1.0/call?$filter=@SlmBreached

There are a number of different types of Augmenters:

 Condition Augmenters – for use with $filter, encapsulating complex search conditions

(including joins).

 Function Augmenters – provide additional functionality to the queries and are entity-

independent

 Token Augmenters – return simple values for use in query filters and are entity-independent

 Extension Augmenters – computed properties, properties selected from other tables with

join, etc.

The full list of available Augmenters is documented within the API Explorer.

Error Handling
The API will return errors with an appropriate HTTP Status Code and a message with the following

structure:

Message: string - This is the error message

Type: string - This is the type of the error – usually just the Exception type name

SubStatus: string - This is a string which will help to narrow down the reason for the

HTTP Status Code

Current SubStatus values are:

None, ResourceNotFound, RecordNotFound, LinkedRecordNotFound,

NotSupported, NotImplemented, NotAllowed

Programmatically, you should rely upon the HTTP Status Code and the SubStatus.

The HTTP Status Codes that are explicitly returned are: 200, 304, 400, 401, 403, 404, 405, 415 and

500.

Note that often a 404 response will include a message body (as described above). This is so that you

can tell the difference between a badly formed url and a non-existent record.

http://…/api/v1.0/call?$filter=@SlmBreached

Cook Book
These pages contain information about how to use the API to create well-formed Alemba objects,

i.e. objects in the vFire database that contain the data and relationships necessary for those objects

to behave in a manner that is compatible with objects created by the suite of vFire applications.

The role of the Alemba rules engine
The business logic that determines how objects behave after creation is contained in the Alemba

rules engine (also known as Infra Rules). Some examples of what it does are:

 The initial routing of calls

 The creation and progression of tasks for new requests

 The application of SLAs and other agreements

 Creating history entries

This engine is invoked when objects are created via the API, so the rules therein will be automatically

applied, just as they are for objects created via vFire interfaces. This simplifies using the API in a

large number of cases – all the API user has to do is to set the values that will trigger those rules and

the engine will take care of the rest. The key properties and parameters that impact behaviour are

covered in the recipes.

Processes that don’t use the rules engine
However there are some processes which must operate across multiple transactions and require

user interaction. In these cases, the API user has more work to do – to create things in the right

order, and to link the objects correctly. One such example is the creation of Service Orders - details

for how to do this are here.

Implications of the difference between a WCF and RESTful API
In the old WCF (Windows Communication Foundation) API, some transactions include parameters

that not only impact the main subject of the transaction, but also create, link or update other related

objects. This kind of hybrid action is not appropriate in an API whose nature is to enable state

transfers, rather than to implement compound rules-driven behaviour. The same ends can be

achieved in other ways, and these are described in the cookbook.

Cooking principles

Lock before you update
The following example refers to Call, but applies to all lockable items, such as Assets and Tickets

(Calls, Requests and Tasks) and their sub-types.

Before performing an update in vFire Core, you need to Take Action in Core, which as well as

assigning the call to yourself. The Core user interface also locks the call, until you close the call

screen. You need to follow equivalent principles when using the API to ensure consistent operation

with the Core application

Note that in the API, the actions available to you will depend on the state of the record, and the

subset of actions that you should attempt are subject to your privileges.

When you Get a record …

 If it is not locked,
o the only PUT/POST action described will be Lock.

 If it is locked by someone else,

o the lock action may fail. The response will tell you who has locked that record.

e.g {
 "Message": "Record locked by Jessica Mercato",
 "SubStatus": "None",
 "Type": "HttpStatusException"
}

 If it is already locked by you,
o all PUT/POST actions that are appropriate to the record in its current state will be

described including Unlock (but not Lock)

Other actions may work, even if they are not listed for the current state of the entity. But there is a

higher likelihood that they will fail.

When you Lock a record …

 If the lock does not succeed – (because someone else has locked it in the meantime and you
do not have the Take Over Calls privilege)

o You should retry a limited number of times, and if still failing, either report an error
or try again later, according to the nature of the activity

o If you succeed during a retry, you should Get the record again and check its
timestamp (LastActionDate)

 If changed, validate that it is still in a state where it makes sense to apply
your changes, and proceed if so

 If the lock succeeds, all PUT/POST appropriate actions will be available
Now you can perform the desired action

If the action fails (because someone else has locked it in the meantime) …

 Note how many times the action has failed and limit action retries to avoid endlessly looping

 Go back to trying to lock the record as above

If the action succeeds …

 If you need to perform further actions on the same record, proceed with those actions
o Note that some actions – e.g. Defer, Forward, Close – automatically perform an

Unlock too. If you need to perform further actions after this, you may need to lock
the object again. The response to any action, also includes a list of suggested actions
applicable to the current state.

 If you have finished with the record, you must ensure that it is unlocked – the API will not do
this automatically until the current session expires. Although unlocking is implied by some
ticket actions (Defer, Forward, Close)

(Note that locked records will eventually be unlocked when the current session expires, just as in
vFire Core)

This follows the same pattern as implemented across the vFire product set, and should not cause

unexpected behaviour in those products.

Recipes

Creating Calls

To create a call, you must choose a Call type, determine the url for the Call Create action, create a

properly formatted Call object, serialize the object in JSON format and submit the object using HTTP

POST.

Finally, the created Call may need to be submitted before it becomes visible to other system users.

Choosing a Call type

Each Call Type may be associated with its own extension fields.

These extension fields may not all be visible on all call types., so the recommended approach to

choosing a call type is to derive this from ITIL IPK Tiers or Call Templates - if these are enabled.

IPK Statuses and Streams

In the Core application, users choose a type of call to log by choosing a screen set

This is often determined by selecting an IPK Status and then an IPK Stream, which in turn are mapped

to a Screen Set.

It is also possible to link Screen Set to a combination of IPK Status, IPK Stream add Call Problem Type

These Call Type mappings are accessible through either api:v1/ipk-status-stream-to-type or

api:v1/ipk-status-stream-type-to-type

Only one of these endpoints will be enabled. The enabled one will allow searching and the other will

respond with HTTP Status code 404

To programatically determine which to use, each endpoint can be queried using $options on the end

of the query string.

Search the enabled call type mapping entity and choose one according to IPK Status, Stream and/or

Call Problem Type

The seach results from each include the usual hypermedia links, and also include "_actions". For

example

{

 "IpkStatus": {

 "Name": "Incident",

 "_context": "api:v1/ipk-status/$metadata",

 "_self": "api:v1/ipk-status/1"

 },

 "IpkStream": {

 "Name": "Standard",

 "_context": "api:v1/ipk-stream/$metadata",

 "_self": "api:v1/ipk-stream/0"

 },

 "_context": "api:v1/ipk-status-stream-to-type/$metadata",

 "_self": "api:v1/ipk-status-stream-to-

type?$select=IpkStatus,IpkStream&$filter=(IpkStatus%3d%3d1%26%26IpkStream%3

d%3d0%26%26InfraEntityType%3d%3d7)",

 "_actions": {

 "Create": [

 {

 "_self": "api:v1/incident/$Create",

 "href": "api:v1/incident",

 "description": "The resource that should be used to create

a call of this type. IpkStatus and IpkStream from this result should be set

in the new call."

 }

]

 }

}

Note that "_actions" contains a reference to a Create action.

The Create action includes a hypermedia link to itself and a "href". This "href" is the link to use if you

want to Create a Call of this type.

Note also the additional information in "description".

In this example, we would choose to create a call using

 api:v1/incident

Call Templates

In the Self Service Portal, users choose a call template, which in turn is associated with a type of call

Call Templates can be searched using the api:v1/call-template resource and the results will

contain references to the appropriate Create action in the hypermedia links for each search result.

{

 "Ref": 96,

 "Name": "Default",

 "_context": "api:v1/call-template/$metadata",

 "_self": "api:v1/call-template/96",

 "_actions": {

 "Create": [

 {

 "_self": "api:v1/call/$Create",

 "href": "api:v1/call",

 "description": "The resource that should be used to create

a call of this type. The Template property in the new call should be set to

the Ref of this result."

 }

]

 }

}

In this example, we would choose to create a call using

 api:v1/call

When choosing a Call type using the API, either of these approaches can be used for any type of user,

or you can define your own mechanism.

For example, your user could choose from a list of Call types directly (instead of templates or IPK Tiers)

Creating a Call Object

Developers may choose to take a trial and error approach to call creation.

For example, submitting an empty Object will likely result in a validation error like the following:

{

 "Message": "The request is invalid",

 "Type": "FieldValidationException",

 "Errors": {

 "IpkStatus": [

 "Required: IpkStatus must be set when Template is null"

],

 "IpkStream": [

 "Required: IpkStream must be set when Template is null"

],

 "Partition": [

 "Required"

]

 }

}

The exact error is entirely dependent upon the configuration of the system.

Call Create Metadata

The metadata for the Call entity describes all of the actions that are available and all of the properties

of that entity.

Each action may also contain a description of the allowed inputs for that action.

The Call Create action is no exception and does define applicable inputs and the associated validation

rules.

Some fields may be required or readonly depending upon the system configuration.

This configuration is described in the action metadata and is validated by the server.

For example

{

 "_context": "api:v1/call/$metadata",

 "_self": "api:v1/call/$Create",

 "href": "api:v1/call",

 "methods": [

 "POST"

],

 "inputs": [

 {

 "property": "ConfigurationItem"

 },

 {

 "property": "User"

 },

 {

 "property": "Priority",

 "readonly": true

 },

 {

 "property": "Description",

 "relations": [

 {

 "behaviors": [

 {

 "type": 11,

 "scope": 1

 }

],

 "source": "Description",

 "target": "DescriptionHtml"

 }

]

 },

 {

 "property": "DescriptionHtml",

 "relations": [

 {

 "behaviors": [

 {

 "type": 14,

 "scope": 1

 }

],

 "source": "DescriptionHtml",

 "target": "Description"

 }

]

 },

 {

 "property": "Type"

 },

 {

 "property": "Organization"

 },

 {

 "property": "Template",

 "relations": [

 {

 "behaviors": [

 {

 "type": 16,

 "scope": 2

 },

 {

 "type": 17,

 "scope": 2

 }

],

 "source": "Template",

 "target": "IpkStatus"

 },

 {

 "behaviors": [

 {

 "type": 16,

 "scope": 2

 },

 {

 "type": 17,

 "scope": 2

 }

],

 "source": "Template",

 "target": "IpkStream"

 },

 {

 "behaviors": [

 {

 "type": 16,

 "scope": 2

 }

],

 "source": "Template",

 "target": "Name"

 }

]

 },

 {

 "property": "IpkStatus",

 "relations": [

 {

 "behaviors": [

 {

 "type": 14,

 "scope": 2

 }

],

 "source": "IpkStatus",

 "target": "IpkStream"

 }

]

 },

 {

 "property": "IpkStream",

 "relations": [

 {

 "behaviors": [

 {

 "type": 14,

 "scope": 2

 }

],

 "source": "IpkStream",

 "target": "IpkStatus"

 }

]

 },

 {

 "property": "Partition",

 "required": true,

 "relations": [

 {

 "behaviors": [

 {

 "type": 15

 }

],

 "source": "Partition",

 "target": "ConfigurationItem"

 },

 {

 "behaviors": [

 {

 "type": 15

 }

],

 "source": "Partition",

 "target": "User"

 },

 {

 "behaviors": [

 {

 "type": 15

 }

],

 "source": "Partition",

 "target": "Priority"

 },

]

 }

],

 "description": "Create a new record of this type",

 "status": "Alpha"

}

The metadata for each action may include "_context", "_self", "href", "description" and "status"

It may also include "methods", which defines the HTTP Methods/Verbs that can be used for the action.

The action metadata may also define and array of "inputs"

Each input may include the following properties

 "property":

 The path of the input value. This may be a reference to the name of a property for the current

entity "_context" (see [[API Metadata]] or may be a dot separated path

 This defines the structure of the object that must be sent in the request body when the action is

invoked.

 e.g $action.CallActionType describes the following JSON structure

 { "$action": { "CallActionType": value } }

 When the "property" path does not refer to an entity property name, all other relevant property

values will also be defined. ie "type", "displayType", etc.

 "required": A boolean value indicating that the input is required. Omitted unless it is true

 "readonly": A boolean value indicating that the input is readonly. Omitted unless it is true.

 "relations":

 An array of relationships between input fields

 Each relation includes "source" and "target" which reference "property" paths within the

"inputs" array.

 Each relation will also include an array of "behaviours". These define validation level rules.

 The behaviors are used in server side validation and transformation rules and are provided so

that the client can understand

 input requirements without needing to rely upon server side validation.

 Behaviours may include the following properties

 "phase":

 This indicates when the behavior will be applied.

 1 indicates that the behavior will be applied after the record has been updated (but before it

is committed to the database)

 0 indicates that the behavior will be applied before, and therefore will apply to the input only.

 "type":

 This indicates the type of relation and may be one of the following

11 (CalculateHtmlTextIfNull): Indicates that the HTML text value of the target input should be set.

When processed on the server.

12 (RequiredIfTrue): Indicates that the target input is required when the source input is true

13 (ZeroIfNotNull): Indicates that the target input must be set to zero when the source input has a

value

14 (RequiredIfNotNull): Indicates that the target input is required when the source input has a value

15 (Dependency): Indicates that the target input is dependent upon the value of the source input. This

typically applies to partitioned inputs.

16 (ReadonlyIfNotNull): Indicates that the target input is readonly when the source input has a value

17 (RequiredIfNull): Indicates that the target input is required when the source input does not have a

value

18 (ReadonlyIfNull): Indicates that the target input is readonly when the source input does not have a

value

 "scope":

 This indicates where the behavior should be interpreted.

 0 indicates that the behavior should be implemented by the client and will be ignored by the

server

 1 indicates that the behavior can be implemented by the client and will be implemented by

the server

 2 indicates that the behavior should be implemented by the client and will be implemented

by the server

Using the Call Create action metadata, we can easily determine which fields are required, and analyse

the more complex relationships between fields.

For the example of creating a Call from a Template, the following ajax call could succeed

var create = $.ajax({

 url: metadata.href.replace(/^api:/, "alemba.api/api"),

 data: {

 Template: 96

 },

 method: metadata.methods[0],

 contentType: 'application/json',

 headers: {

 'Authorization': "Bearer " + access_token

 }

});

Call Create Response

When successful, the Call Create action will respond with HTTP Status Code 201.

The response body will include the actual changes to the Call record and hypermedia links to the

currently applicable actions.

For example

{

 "ActualLogDate": "2017-01-23T12:12:41.0000000Z",

 "Template": 96,

 "Ref": 10056,

 "_context": "api:v1/call/$metadata",

 "_self": "api:v1/call/10056",

 "_actions": {

 "Submit": [

 {

 "_self": "api:v1/call/$Submit",

 "href": "api:v1/call/10056/submit"

 }

],

 "Update": [

 {

 "_self": "api:v1/call/$Update",

 "href": "api:v1/call/10056"

 }

]

 }

}

The "_actions" property in the response indicates the actions which are applicable to the created

Call in its current state. A Call will only be visible to the creator until it has been submitted,

therefore if the "Submit" action is listed in the Create response, this action should be invoked before

relinquishing responsibility for the Call.

Replicating behaviour of Self Service

If a call is logged in Self Service, fixed rules are applied after saving, to populate certain fields. This

has not been replicated in the API, as we will be making such rules configurable in the future. If you

wish to replicate the current logic, you need to programmatically do so, following the rules below:

 If LocationId is not set, LocationId is set to the current User’s Location Ref (if they have one)

 If OrganizationId is not set, OrganizationId is set to the current User’s Organzation Ref (if

they have one)

 If the LocationId is still not set, this is set to the first valid Location of: the selected User or

Service or CI or Organization of the call.

 If the OrganzationId is still not set, this is set to the first valid Organzation from: the selected

User or Service or CI of the call.

Impact of data on post-creation rules

Almost any property of a call may be used by IPK Workflow Rules, and each may have a different

impact, according how the rules are set up in your system. The API user should be fully conversant

with how these rules are configured, so as to achieve the desired assignment, notification and

workflow creation.

Call creation checklist

To summarize, the actions to perform are as follows,

 For Users,

o Select a Call Template (restricted by partition/security if active)

 For Analysts,

o Select a Screen Set (and IPK Status, IPK Stream, Problem Type if so configured,

restricted by partition/security if active)

 Then for both,

o Apply variable data

o Create Call

Creating Requests
The templates retrieved are subject to several security and configuration settings, including:

 partitioning Request Screen Sets and Workflow Templates

 Workflow Management Settings

 login's Workflow Management Role's Template Security settings

Calls and Requests – Determining Initial Assignment
In the WCF API, it is possible to specify the Officer and/or Group to which Calls and Requests are

forwarded on creation. These are specified as parameters rather than properties to update. They are

ignored if IPK or Workflow rules are in place to set this.

In the RESTful API, it is possible to set these values on the Defer action, rather than the Create, so

API users should use both actions, one after the other, to achieve the same thing.

Calls and Requests – Recording Actions
In the WCF API, the transactions to create and update calls include the ability to record “Action and

Solution” information, which is largely recorded an associated history record. In the RESTful API, this

can be achieved using the Defer action. This may include some of the following parameters:

 $action.Description.Description

 $action.Description.DescriptionHtml

 $action.Description.Title

 $action.ActionType

Creating a Service Order
The items that need to be created for a valid service order are:

 Service Order

 Service Order Items

 A Call or Request per Service Order Item (if you want those items immediately submitted)

Required inputs are: one or more service actions and/or service bundles, and a quantity for each.

To create a new Service Order, a new service order record must first be created (api:v1/service-

order/$create)

For each service action in the order:

A Service Order Item linked to the Service Order must be created (api:v1/service-order-

item/$create) and a Call or Request must be created which is linked to the Service Order Item.

The type of Call or Request to create is indicated in the metadata links for each service action

Finally, the Service Order must be Submitted (using the Submit action), which will automatically

calculate the Order Total and Submit the linked Tickets.

The new dynamic service bundle type is not supported in this version of the API.

The creation of a request will automatically create the necessary tasks and initiate the workflow.

Note that the entity called Order is used for transactions that are part of Asset Management, and is

not used for Service Orders.

Closing Calls
The process of closing a call in Core is subject to a number of configurable rules, settings and

privileges. Some of these are handled by the rules engine and will be automatically invoked after

calling the Close method, others need to be considered by the API user in determining what to pass

to the Close method, and whether to call additional methods.

List of Nova related database tables
Nova is driven by metadata, which is stored in the vFire database in new tables. These include:

_EFMigrationsHistory, AppSetting, Clients, EntityPage, Form, FormDisplayType, FormType,

InfraPermission, InfraRole, Label,LabelKey, Language, AlembaSystem, AlembaSystemPage,

Page, PageBackLink, Permission, PermissionType, Query, QueryMetadata, QueryParameter,

RefreshTokens, Role, RolePermission, ServiceEvent, UserPermission, Widget, WidgetConfig,

WidgetConfigLabel, WidgetConfigNavigation, WidgetConfigNavigationCondition,

WidgetConfigQuery, WidgetConfigSetting, WidgetContract, WidgetContractParameter,

WidgetInstance, WidgetNavigationContractBinding, WidgetQueryContractBinding,

WidgetSetting

These tables do not need to be accessed directly to use the API and so are not exposed as entities in

the API Explorer.

